Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
نویسندگان
چکیده
We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.
منابع مشابه
Stochastic Primal Dual Coordinate Method with Non-Uniform Sampling Based on Optimality Violations
We study primal-dual type stochastic optimization algorithms with non-uniform sampling. Our main theoretical contribution in this paper is to present a convergence analysis of Stochastic Primal Dual Coordinate (SPDC) Method with arbitrary sampling. Based on this theoretical framework, we propose Optimality Violation-based Sampling SPDC (ovsSPDC), a non-uniform sampling method based on Optimalit...
متن کاملPrimal-Dual Stochastic Hybrid Approximation Algorithm
A new algorithm for solving convex stochastic optimization problems with expectation functions in both the objective and constraints is presented. The algorithm combines a stochastic hybrid procedure, which was originally designed to solve problems with expectation only in the objective, with dual stochastic gradient ascent. More specifically, the algorithm generates primal iterates by minimizi...
متن کاملOn the Iteration Complexity Analysis of Stochastic Primal-Dual Hybrid Gradient Approach with High Probability
In this paper, we propose a stochastic Primal-Dual Hybrid Gradient (PDHG) approach for solving a wide spectrum of regularized stochastic minimization problems, where the regularization term is composite with a linear function. It has been recognized that solving this kind of problem is challenging since the closed-form solution of the proximal mapping associated with the regularization term is ...
متن کاملSeveral variants of the primal - dual hybrid gradient algorithm with applications ∗
By reviewing the primal-dual hybrid algorithm (PDHA) proposed by He, You and Yuan (SIAM J. Imaging Sci. 2014;7(4):2526-2537), in this paper we introduce four improved schemes for solving a class of generalized saddle-point problems. By making use of the variational inequality, weaker conditions are presented to ensure the global convergence of the proposed algorithms, where none of the objectiv...
متن کاملFaster PET reconstruction with a stochastic primal-dual hybrid gradient method
Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors—let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.04957 شماره
صفحات -
تاریخ انتشار 2017